83 research outputs found

    Mastoid Vibration Affects Dynamic Postural Control During Gait

    Get PDF
    Our objective was to investigate how manipulating sensory input through mastoid vibration (MV) could affect dynamic postural control during walking, with and without simultaneous manipulation of the visual and the somatosensory systems. We used three levels of MV (none, unilateral, and bilateral) via vibrating elements placed on the mastoid processes. We combined this with the six conditions of the Locomotor Sensory Organization Test (LSOT) paradigm to challenge the visual and somatosensory systems. We hypothesized that MV would affect both amount and temporal structure measures of sway variability during walking and that, in combination with manipulations of the visual and the somatosensory inputs, MV would augment the effects previously observed. The results confirmed that MV produced a significant increase in the amount of sway variability in both anterior–posterior and medial–lateral directions. Significant changes in the temporal structure of sway variability were only observed in the anterior–posterior direction. Bilateral MV produced larger effects than unilateral stimulation. We concluded that sensory input while walking could be affected using MV. Combining MV with manipulations of visual and somatosensory input could allow us to better understand the contributions of the sensory systems during locomotion

    Variability of Lower Extremity Joint Kinematics During Backward Walking in a Virtual Environment

    Get PDF
    Backward walking (BW) shows significant differences with forward walking (FW) and these differences are potentially useful in rehabilitation. However the lack of visual cues makes BW risky. The purpose of this study was to investigate the effect of visual cues provided by a virtual environment on FW and BW on gait variability. Each subject underwent four conditions of treadmill walking at self-selected pace. The subjects walked backwards in three conditions and forwards in the fourth condition. A virtual corridor was displayed to the subjects in the FW condition (forward optic flow) and two of the backward conditions (forward and backward optic flow). The third BW condition was a control condition (no visual cues). Gait variability measures of the hip, knee and ankle range of motion and the stride interval were analyzed. Magnitude of variability was evaluated with the coefficient of variation and structure of variability with approximate entropy. Significant differences were demonstrated between the FW and the BW gait characteristics as well as in gait variability (for both magnitude and structure of variability). No significant differences were found between the three BW conditions as a result of the direction of visual cues. In order to get optimal benefit of BW in the aged and the diseased, optical flow of visual feedback may need to be manipulated in a different manner than FW. Future studies will explore other parameters of visual cues like the velocity of optic flow and appearance of obstacles to obtain the best visual cue configuration for rehabilitation

    The Effect of Virtual Reality on Gait Variability

    Get PDF
    Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows – same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability - coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures - approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn \u3e OFf \u3e OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues

    Gait variablility is altered in older adults when listening to auditory stimuli with differing temporal structures

    Get PDF
    Gait variability in the context of a deterministic dynamical system may be quantified using nonlinear time series analyses that characterize the complexity of the system. Pathological gait exhibits altered gait variability. It can be either too periodic and predictable, or too random and disordered, as it is the case with aging. While gait therapies often focus on restoration of linear measures such as gait speed or stride length, we propose that the goal of gait therapy should be to restore optimal gait variability, which exhibits chaotic fluctuations and is the balance between predictability and complexity. In this context, our purpose was to investigate how listening to different auditory stimuli affects gait variability. Twenty-seven young and 27 elderly subjects walked on a treadmill for 5 minutes while listening to white noise, a chaotic rhythm, a metronome, and with no auditory stimulus. Stride length, step width, and stride intervals were calculated for all conditions. Detrended Fluctuation Analysis was then performed on these time series. A quadratic trend analysis determined that an idealized inverted-U shape described the relationship between gait variability and the structure of the auditory stimuli for the elderly group, but not for the young group. This proof-of-concept study shows that the gait of older adults may be manipulated using auditory stimuli. Future work will investigate which structures of auditory stimuli lead to improvements in functional status in older adults

    Mastoid vibration affects dynamic postural control during gait in healthy older adults

    Get PDF
    Vestibular disorders are difficult to diagnose early due to the lack of a systematic assessment. Our previous work has developed a reliable experimental design and the result shows promising results that vestibular sensory input while walking could be affected through mastoid vibration (MV) and changes are in the direction of motion. In the present paper, we wanted to extend this work to older adults and investigate how manipulating sensory input through mastoid vibration (MV) could affect dynamic postural control during walking. Three levels of MV (none, unilateral, and bilateral) applied via vibrating elements placed on the mastoid processes were combined with the Locomotor Sensory Organization Test (LSOT) paradigm to challenge the visual and somatosensory systems. We hypothesized that the MV would affect sway variability during walking in older adults. Our results revealed that MV significantly not only increased the amount of sway variability but also decreased the temporal structure of sway variability only in anterior-posterior direction. Importantly, the bilateral MV stimulation generally produced larger effects than the unilateral. This is an important finding that confirmed our experimental design and the results produced could guide a more reliable screening of vestibular system deterioration

    uGMRT HI 21-cm absorption observations of two extremely inverted spectrum sources

    Full text link
    We report the detection of HI 21-cm absorption in a member of the rare and recently discovered class of compact radio sources, 'Extremely Inverted Spectrum Extragalactic Radio Sources (EISERS)'. EISERS conceivably form a special sub-class of the inverted spectrum radio galaxies since the spectral index of the optically thick part of the spectrum for these sources crosses the synchrotron self absorption limit of α=+2.5\alpha=+2.5 (S(ν\nu) \propto να\nu^{\alpha}). We have searched for HI absorption in two EISERS using the recently upgraded Giant Metrewave Radio Telescope (uGMRT) and detected an absorption feature in one of them. The strong associated HI absorption detected against the source J1209-2032 (zz=0.4040) implies an optical depth of 0.178±\pm0.02 corresponding to an HI column density of 34.8±\pm2.9 ×\times1020^{20} cm2^{-2}, for an assumed HI spin temperature of 100 K and covering factor of 1. This is among the highest known optical depth and HI column densities found for compact radio sources of GPC/CSS type and supports the free-free absorption model for the steeply inverted radio spectrum of this source. For the other source, J1549++5038 (zz = 2.171), no HI absorption was detected in our observations.Comment: Accepted for publication in A&

    Locomotor Sensory Organization Test: A Novel Paradigm for the Assessment of Sensory Contributions in Gait

    Get PDF
    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body’s movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing

    Locomotor Sensory Organization Test: How Sensory Conflict Affects the Temporal Structure of Sway Variability During Gait

    Get PDF
    When maintaining postural stability temporally under increased sensory conflict, a more rigid response is used where the available degrees of freedom are essentially frozen. The current study investigated if such a strategy is also utilized during more dynamic situations of postural control as is the case with walking. This study attempted to answer this question by using the Locomotor Sensory Organization Test (LSOT). This apparatus incorporates SOT inspired perturbations of the visual and the somatosensory system. Ten healthy young adults performed the six conditions of the traditional SOT and the corresponding six conditions on the LSOT. The temporal structure of sway variability was evaluated from all conditions. The results showed that in the anterior posterior direction somatosensory input is crucial for postural control for both walking and standing; visual input also had an effect but was not as prominent as the somatosensory input. In the medial lateral direction and with respect to walking, visual input has a much larger effect than somatosensory input. This is possibly due to the added contributions by peripheral vision during walking; in standing such contributions may not be as significant for postural control. In sum, as sensory conflict increases more rigid and regular sway patterns are found during standing confirming the previous results presented in the literature, however the opposite was the case with walking where more exploratory and adaptive movement patterns are present

    Temporal Structure of Support Surface Translations Drive the Temporal Structure of Postural Control During Standing

    Get PDF
    A healthy biological system is characterized by a temporal structure that exhibits fractal properties and is highly complex. Unhealthy systems demonstrate lowered complexity and either greater or less predictability in the temporal structure of a time series. The purpose of this research was to determine if support surface translations with different temporal structures would affect the temporal structure of the center of pressure (COP) signal. Eight healthy young participants stood on a force platform that was translated in the anteroposterior direction for input conditions of varying complexity: white noise, pink noise, brown noise, and sine wave. Detrended fluctuation analysis was used to characterize the long-range correlations of the COP time series in the AP direction. Repeated measures ANOVA revealed differences among conditions (p \u3c 0.001). The less complex support surface translations resulted in a less complex COP compared to normal standing. A quadratic trend analysis demonstrated an inverted-u shape across an increasing order of predictability of the conditions (p \u3c 0.001). The ability to influence the complexity of postural control through support surface translations can have important implications for rehabilitation

    Locomotor Sensory Organization Test: A Novel Paradigm for the Assessment of Sensory Contributions in Gait

    Get PDF
    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body’s movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing
    corecore